
Stratified implementation of event processing network
Ayelet Biger

One Software Technologies
ayeletb@one1.co.il

 Opher Etzion
IBM Haifa

Research Lab
 opher@il.ibm.com

Yuri Rabinovich
 IBM Haifa

Research Lab
yurir@il.ibm.com

ABSTRACT

This abstract describes an approach for stratified implementation
of event processing network; the abstract explains the motivation,
outlines the reasoning behind this approach and provides initial
experimentation.

General Terms

Performance, Design, Experimentation.

Keywords

Event Processing, Stratification, Parallel computing.

1. INTRODUCTION
Most implementation of event processing applications are done by
centralized engines, one of the main reasons is the inter-
dependencies among various event processing operations, by the
fact that an event processing operation may consume a derived
event that has been created by another event processing operation,
and implementations are built around the fact that these
dependencies are resolved internally in the event processing
engine.

EPN (Event Processing Networks) [1], [2] is a means to describe
and implement event processing, under this paradigm the events
are flowing among autonomic EPAs (Event Processing Agents);
each EPA is performing a single operation. The EPN concept can
model event processing applications, however it does neither
describe the level of distribution nor the level of parallelism
among agents, thus an EPN can be implemented anywhere
between the two extremes of having an EPN describing a
traditional centralized single engine implementation, and fully
distributed environment in which every agent resides on a
different machine. The goal of this research project is to bridge
the gap between the model and implementation and optimize the
configuration of allocation of agents to software artifacts and
physical machines.

2. STRATIFICATION
The first step towards optimal implementation of EPN has been to
apply the stratification approach, according to which all event
processing operations are mapped to agents, and analyzed for
dependencies and creates a dependency graph [3]; the dependency
graph is then collapsed to a collection of strata, each stratum

contains all agents that have any dependency in events that are
derived within the previous stratum. Formally speaking:

o Let � be an EPA, such that their inputs are events �e_1 ,…

��e_n..
o Let emitter (e) = source of event e; where emitter can be

either external producer for raw events or an EPA for derived
event

o Let emitter-stratum (e) = 0 if e is a raw event; stratum
(emitter (e)) otherwise.

o � is assigned to stratum (i+1) iff

 max (emitter-stratum (�e_j) = i.
This recursive assignment rule partitions all agents to N strata
level, according to the semantics of the dependencies among
agents. Stratification by itself may not provide the optimal
partition, but it may provide a basis for further optimizations,
using the simplest assignment, of assign each stratum to a single
processor, provides a first level of optimization. It should be
noted that stratification has been used before in the active
database area for modularization purposes [4]

3. PRAGMATIC CHALLENGES
Trying to apply the stratification approach to an event processing
implementation whose basic programming model follows the EPN
principles is straightforward. However, implementation using
event processing model that hides the dependency inside an
engine's implementation may be a challenge, depending on the
level of meta-data that exists within the agent. Our first prototype
is based on AMiT [5] which does not expose a dependency
model, furthermore, there are various types of dependencies in
events; e.g. AMiT supports context-oriented operations [6] which
create extra dependencies in emitters of events that open or close
contexts. Example: an agent traces complain on pain within the
first 24 hours of a medical treatment, the dependency is not only
in the event of "pain complain", but also in the event of "medical
treatment occurred", which opens the temporal context. Other
event processing languages may have other types of dependencies.

4. IMPLEMENTATION EXAMPLE

Figure 1 shows an implementation architecture in which each
stratum is implemented using different machines. There are P
event producers and C event consumers. Each stratum level i may
have Ni event processing agents and each agent handles single
pattern. Each stratum level may run on different machine or
multiple machines.

Figure 2 describes a simple example that detects "speculative
customers". It gets events about buy and sell of securities, its first
agent detects customers that have bought and then sold the same
security in the same day in a value of more than $1M, while the
second agent determines that if a customer satisfied the first
pattern at least three times within a month, it shows speculative
behavior.

5. EXPERIENCE RESULTS
Implementation Input events total

throughput
Derived events total
throughput

Single physical node
(100%)

28,402 3,155

2 Stratum levels – 4
physical nodes. 3 agents in
first stratum and 1 agent in
second stratum

3x 27,292 + 31,092 =
112,968

10,364

4 nodes improvement 397.7% 328.5%

Additional node
improvement

99.42% 82.12%

Table 1: Comparison of one and two levels

Table 1 shows measurements of event throughput for a
centralized implementation with one physical processing node vs.
the two strata implementation that uses 4 physical processing
nodes, each running only one agent. The Sequence agent produces
derived events in a rate that is 1/3 of the event input capacity of
the AtLeast agent, thus we can use 3 agents in the first stratum to
achieve max throughput of the stratified application. While there
is a communication overhead, it shows throughput performance
improvement of 397.7%. While throughput is just one of the
optimization criteria, and the example is rather simple, this
exercise served as a proof of concept for the usability of this
approach. The continuation of this research will investigate:

1. Tradeoffs in further parallelization within a single
stratum.

2. Optimization relative to other criteria of scalability, e.g.
Number of producers, number of consumers, number of
agents, size of state.

3. Taking location constraints into account for distribution
of the system.

4. Taking into account heterogeneity of agent types.

6. References

[1] L. Perrochon, W. Mann, S.e Kasriel and D. Luckham (1999):
Event Mining with Event Processing Networks. PAKDD 1999:
474-478

[2]. G. Sharon, O. Etzion: Event-processing network model and

implementation (2008). IBM System Journal 47(2): 321-334

[3]. A. Biger - Complex Event Processing Scalability by Partition
(2007) – M.Sc. Thesis, Technion – Israel Institute of Technology.

[4]. El. Baralis, S. Ceri, S. Paraboschi (1996): Modularization
Techniques for Active Rules Design. ACM Trans. Database Syst.
21(1): 1-29

[5]. A. Adi, O. Etzion: Amit - the situation manager. VLDB J.
13(2): 177-203 (2004)

[6]. A. Adi, A. Biger, D. Botzer, O. Etzion, Z Sommer (2003):
Context Awareness in Amit. Active Middleware Services 2003:
160-167

Figure 1: Stratified Architecture

Figure 2: A simple example

