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ABSTRACT 
The scientific knowledge discovery process has been aided 
recently by advances in cyberinfrastructure that automate the 
execution of data retrieval, modeling and analysis tasks typically 
undertaken during scientific exploration. But these infrastructures 
lack a generalized programming model for integrating real time 
data from sensors and instruments into the analysis process.  In 
this ongoing work we examine two approaches to stream 
processing, a rule system and a query language-based system, and 
argue that either can be made suitable for our user base with 
enough hand-written code, but can either become as accepted as 
workflow systems in the science community?  What will that 
take? 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval] Information filtering. 

General Terms 
Experimentation. 

Keywords 
Scientific workflows, environmental stream processing. 

1. INTRODUCTION 
Scientific knowledge discovery is typically a human process 
where a scientist interacts with the data, computational models 
and tools in his lab and on the Internet. Workflow systems such as 
Taverna, Apache ODE, and Kepler are gaining popularity 
amongst the scientific community through their ability to execute 
sequences of tasks on behalf of a scientist during scientific 
investigation.  These systems when built as part of a larger 
cyberinfrastructure framework give the scientist tools to construct 
task graphs of execution sequences, often by means of a visual 
interface where the scientist connects task boxes together with 
arcs representing either control flow or data flow. Unlike business 
processing workflows, scientific workflows need to expose a high 
degree of detail and control to the scientist both during 
configuration and during execution.  Workflow customization is 
highly prevalent – to the extent that workflow runs are hardly 
comparable.  

Workflow languages used in science discovery are Turing 
complete so in theory can support any logic expressible by a 
programming language.  The execution environments supporting 

the workflow engines, on the other hand, are subject to constraints 
on physical resources, and hence in practice the workflow task 
graphs used in science utilize relatively few of the workflow 
patterns cataloged in [5].  In addition, and importantly for our 
discussion, these workflows, which are executed on demand, are 
executed once.  

Into this context is introduced the need for science discovery that 
is responsive to real time information.  How does a scientist use 
the information from 1000 geo-sensors in Southern California to 
predict earthquakes with prediction times that are better than real 
time?  Soon small-scale weather radars will be installed on cell 
phone towers across the country, particularly in tornado or flood 
alleys, giving remarkable amounts of information about the lower 
3km of the atmosphere.   

Further, while the needs of one science lab can be supported by an 
ad hoc solution to ingesting streaming weather data for processing 
for instance, can this capability easily be extended to share the 
data with social scientists who might examine fault behavior to 
better understand the poverty in an area?  If we can, through 
simple programming models and abstractions, make scientific 
discovery involving real-time data accessible to specialists who 
share and utilize data across scientific domains, we have brought 
science one step closer to solving the largest of human problems. 

Our intention in our research is to consider events processing in 
the context of the highly stylized, highly controlled human work 
processes in which the scientist engages, where the workflow 
engine is a given but insufficient for stream processing.  

Our work is motivated by realistic complex e-Science stream 
processing and workflow examples, in particular, real-time 
responsive regional severe storm prediction. We have compared 
two open-source systems:  the Drools rule-based system and the 
Esper SQL-style language processing system, on their ability to 
express and carry out complex stream processing. Our 
experimental comparison shows the systems to be reasonably 
comparable in that either can be made suitable to the task with 
enough hand-written software.  But the larger question is this: can 
either become accepted as part of a workflow system driven 
cyberinfrastructure for the science community?  What will that 
take? 

2. THE SCIENCE CHALLENGE 
We focus on the science domain of regional severe storm 
prediction and do so for several reasons.  First, the mesoscale 
meteorology community is particularly forward looking in their 
adoption of workflow-driven cyberinfrastructure.  The Annual 
Spring Forecast Challenge held in the US judges the effectiveness 



of new research weather forecast models.  This year it is using the 
LEAD cyberinfrastructure [1] routinely to run forecasts.  Second, 
the international weather community has a long history of 
monitoring the atmosphere so software and community structures 
are well established (i.e., Unidata) to deliver data from 
instruments to research desktop in a matter of seconds.  Finally, 
our group has a deep understanding of the stream and data mining 
issues in real time atmospheric instrument data, so the application 
is a particularly well-suited motivator to better understand the 
capability of rule and language based systems.  

The example that guides our work can be intuitively understood as 
automating the work of the meteorologist researcher who wants to 
run a weather forecast model in response to developing regional 
(mesoscale) weather.  The task traditionally involves significant 
human intervention and is not executed in response to weather 
conditions as they occur.  The goal is to have the system monitor 
real time radar data over an area of the country, identifying and 
tracking severe storms as they occur during a specified time 
period, and triggering a weather forecast model run for each 
unique storm.  False positives, that is, severe storms that are 
identified as such but are not really severe storms, are costly 
because each weather forecast model run monopolizes 32 
processors in parallel for 30 minutes or more.  

More specifically, the raw events that must be processed are 
binary radar data volume scans that are on average 3 MBytes in 
size.  In our current work we use data from the network of over 
130 large-scale Doppler radars.  A 1000Km by 1000Km region 
over the US contains on average 5 to 10 radar stations each 
producing a volume scan every five to seven minutes.  

Events processing must produce a quilt of radar data that covers 
the geographic region for each volume scan of the radars and then 
apply data mining filters to identify the unique severe storms, 
while tracking existing storms and their movements.  The first 
step is to filter out the radar events that fall outside the selected 
spatial domain.   We must then find a covering collection. That is, 
readings that roughly happen at the same time" must be fused or 
joined [3]. The data mining examines a volume scan for specific 
wind velocity signatures called Rankine Vortex signatures.  These 
signatures are then clustered using a Storm Clustering Algorithm 
[4]. Data mining is processor intense, so utilizes multiple 
processors in parallel. Results are then compared to historical data 
to determine new and unique severe storms.  A trigger for each of 
these is generated that is fed to a waiting weather forecast 
workflow. Use of historical data about continuous event 
processing in stream processing has been called "spanning 
applications".  

3. DIFFERENT APPROACHES 
There are two accepted approaches to event detection: rule based 
approaches and SQL-based approaches.  Our work to date has 
shown that the two paradigms are comparable from a performance 
perspective, but have strengths and weaknesses in their 
programming model and their ability to interact in the larger 
system in which they must exist. 

The stream processing research community and industry have 
developed a number of systems that demonstrate various 
advanced capability. Stream processing systems accessed and 
specified through a declarative query language include 

Streambase, Corel8, Tibco Complex Events Processing, and 
Oracle Extreme Transaction Processing in the industry space and 
Aurora, StreamDB, and Calder in the research space. We have 
chosen to experiment with the Esper system [2] because it is an 
open source product with good performance.  Rule-based systems 
specify behavior as a set of rules that are selectively triggered 
when state conditions are right. We have chosen to experiment 
with the forward chaining rule engine, Drools [6], an open source 
solution that is currently undergoing extension by the author to be 
more responsive to temporal conditions[6]. Rule engines have 
been applied to business process monitoring (i.e., Rapide) and 
have been integrated into workflow management systems, see 
TriGSflow.  

4. FAR FROM USER ACCEPTANCE? 
There are a number of critical requirements to making workflow 
orchestration responsive to environmental data.  We think events 
processing approaches can be fruitfully applied in part because of 
the expressivness of the continuous processing problems.  But as 
we stated earlier, scientists are beginning to accept workflow 
orchestrated activity.  Further, they require rich control over 
configuring and running moderately complex workflows that are 
run once to completion.   What is the most appropriate 
programming model to support the underlying rich functionality 
of continuous stream processing and highly configurable 
workflow systems?  

Our experimental study qualitatively and quantitatively assesses 
both a rules and a declarative query language approach against a 
canonical instrument-driven e-Science workflow example for 
purposes of exposing the shortcomings.  These shortcomings may 
point to opportunities to unify the paradigms into a single 
programming model.  
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