
Unified Programming Model for Instrument-driven e-
Science Workflows?

Beth Plale
Indiana University, USA

+1 (812) 855-4373
plale@cs.indiana.edu

Chathura Herath
Indiana University, USA
cherath@cs.indiana.edu

Rahul Ramachandran
University of Alabama Huntsville USA

+1 (256)-824-5157
ramachandran@itsc.uah.edu

ABSTRACT
The scientific knowledge discovery process has been aided
recently by advances in cyberinfrastructure that automate the
execution of data retrieval, modeling and analysis tasks typically
undertaken during scientific exploration. But these infrastructures
lack a generalized programming model for integrating real time
data from sensors and instruments into the analysis process. In
this ongoing work we examine two approaches to stream
processing, a rule system and a query language-based system, and
argue that either can be made suitable for our user base with
enough hand-written code, but can either become as accepted as
workflow systems in the science community? What will that
take?

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval] Information filtering.

General Terms
Experimentation.

Keywords
Scientific workflows, environmental stream processing.

1. INTRODUCTION
Scientific knowledge discovery is typically a human process
where a scientist interacts with the data, computational models
and tools in his lab and on the Internet. Workflow systems such as
Taverna, Apache ODE, and Kepler are gaining popularity
amongst the scientific community through their ability to execute
sequences of tasks on behalf of a scientist during scientific
investigation. These systems when built as part of a larger
cyberinfrastructure framework give the scientist tools to construct
task graphs of execution sequences, often by means of a visual
interface where the scientist connects task boxes together with
arcs representing either control flow or data flow. Unlike business
processing workflows, scientific workflows need to expose a high
degree of detail and control to the scientist both during
configuration and during execution. Workflow customization is
highly prevalent – to the extent that workflow runs are hardly
comparable.

Workflow languages used in science discovery are Turing
complete so in theory can support any logic expressible by a
programming language. The execution environments supporting

the workflow engines, on the other hand, are subject to constraints
on physical resources, and hence in practice the workflow task
graphs used in science utilize relatively few of the workflow
patterns cataloged in [5]. In addition, and importantly for our
discussion, these workflows, which are executed on demand, are
executed once.

Into this context is introduced the need for science discovery that
is responsive to real time information. How does a scientist use
the information from 1000 geo-sensors in Southern California to
predict earthquakes with prediction times that are better than real
time? Soon small-scale weather radars will be installed on cell
phone towers across the country, particularly in tornado or flood
alleys, giving remarkable amounts of information about the lower
3km of the atmosphere.

Further, while the needs of one science lab can be supported by an
ad hoc solution to ingesting streaming weather data for processing
for instance, can this capability easily be extended to share the
data with social scientists who might examine fault behavior to
better understand the poverty in an area? If we can, through
simple programming models and abstractions, make scientific
discovery involving real-time data accessible to specialists who
share and utilize data across scientific domains, we have brought
science one step closer to solving the largest of human problems.

Our intention in our research is to consider events processing in
the context of the highly stylized, highly controlled human work
processes in which the scientist engages, where the workflow
engine is a given but insufficient for stream processing.

Our work is motivated by realistic complex e-Science stream
processing and workflow examples, in particular, real-time
responsive regional severe storm prediction. We have compared
two open-source systems: the Drools rule-based system and the
Esper SQL-style language processing system, on their ability to
express and carry out complex stream processing. Our
experimental comparison shows the systems to be reasonably
comparable in that either can be made suitable to the task with
enough hand-written software. But the larger question is this: can
either become accepted as part of a workflow system driven
cyberinfrastructure for the science community? What will that
take?

2. THE SCIENCE CHALLENGE
We focus on the science domain of regional severe storm
prediction and do so for several reasons. First, the mesoscale
meteorology community is particularly forward looking in their
adoption of workflow-driven cyberinfrastructure. The Annual
Spring Forecast Challenge held in the US judges the effectiveness

of new research weather forecast models. This year it is using the
LEAD cyberinfrastructure [1] routinely to run forecasts. Second,
the international weather community has a long history of
monitoring the atmosphere so software and community structures
are well established (i.e., Unidata) to deliver data from
instruments to research desktop in a matter of seconds. Finally,
our group has a deep understanding of the stream and data mining
issues in real time atmospheric instrument data, so the application
is a particularly well-suited motivator to better understand the
capability of rule and language based systems.

The example that guides our work can be intuitively understood as
automating the work of the meteorologist researcher who wants to
run a weather forecast model in response to developing regional
(mesoscale) weather. The task traditionally involves significant
human intervention and is not executed in response to weather
conditions as they occur. The goal is to have the system monitor
real time radar data over an area of the country, identifying and
tracking severe storms as they occur during a specified time
period, and triggering a weather forecast model run for each
unique storm. False positives, that is, severe storms that are
identified as such but are not really severe storms, are costly
because each weather forecast model run monopolizes 32
processors in parallel for 30 minutes or more.

More specifically, the raw events that must be processed are
binary radar data volume scans that are on average 3 MBytes in
size. In our current work we use data from the network of over
130 large-scale Doppler radars. A 1000Km by 1000Km region
over the US contains on average 5 to 10 radar stations each
producing a volume scan every five to seven minutes.

Events processing must produce a quilt of radar data that covers
the geographic region for each volume scan of the radars and then
apply data mining filters to identify the unique severe storms,
while tracking existing storms and their movements. The first
step is to filter out the radar events that fall outside the selected
spatial domain. We must then find a covering collection. That is,
readings that roughly happen at the same time" must be fused or
joined [3]. The data mining examines a volume scan for specific
wind velocity signatures called Rankine Vortex signatures. These
signatures are then clustered using a Storm Clustering Algorithm
[4]. Data mining is processor intense, so utilizes multiple
processors in parallel. Results are then compared to historical data
to determine new and unique severe storms. A trigger for each of
these is generated that is fed to a waiting weather forecast
workflow. Use of historical data about continuous event
processing in stream processing has been called "spanning
applications".

3. DIFFERENT APPROACHES
There are two accepted approaches to event detection: rule based
approaches and SQL-based approaches. Our work to date has
shown that the two paradigms are comparable from a performance
perspective, but have strengths and weaknesses in their
programming model and their ability to interact in the larger
system in which they must exist.

The stream processing research community and industry have
developed a number of systems that demonstrate various
advanced capability. Stream processing systems accessed and
specified through a declarative query language include

Streambase, Corel8, Tibco Complex Events Processing, and
Oracle Extreme Transaction Processing in the industry space and
Aurora, StreamDB, and Calder in the research space. We have
chosen to experiment with the Esper system [2] because it is an
open source product with good performance. Rule-based systems
specify behavior as a set of rules that are selectively triggered
when state conditions are right. We have chosen to experiment
with the forward chaining rule engine, Drools [6], an open source
solution that is currently undergoing extension by the author to be
more responsive to temporal conditions[6]. Rule engines have
been applied to business process monitoring (i.e., Rapide) and
have been integrated into workflow management systems, see
TriGSflow.

4. FAR FROM USER ACCEPTANCE?
There are a number of critical requirements to making workflow
orchestration responsive to environmental data. We think events
processing approaches can be fruitfully applied in part because of
the expressivness of the continuous processing problems. But as
we stated earlier, scientists are beginning to accept workflow
orchestrated activity. Further, they require rich control over
configuring and running moderately complex workflows that are
run once to completion. What is the most appropriate
programming model to support the underlying rich functionality
of continuous stream processing and highly configurable
workflow systems?

Our experimental study qualitatively and quantitatively assesses
both a rules and a declarative query language approach against a
canonical instrument-driven e-Science workflow example for
purposes of exposing the shortcomings. These shortcomings may
point to opportunities to unify the paradigms into a single
programming model.

5. REFERENCES
[1] Droegemeier, K., et al., Service-oriented environments for

dynamically interacting with mesoscale weather, Computing
in Science and Engineering, IEEE Computer Society Press
and American Institute of Physics, Vol. 7, No. 6, pp. 12-29,
2005.

[2] Esper http://esper.codehaus.org

[3] Li, X., B. Plale, N. Vijayakumar, R. Ramachandran, S.
Graves, and H. Conover. Real-time storm detection and
weather forecast activation through data mining and events
processing. To appear Earth Science Informatics, H.A.
Babaie, Ed., Springer 2008.

[4] Rushing, B.J., R. Ramachandran, U. Nair, S. Graves, R.
Welch, and H. Lin. ADaM: a data mining toolkit for
scientists and engineers. Computers and Geosciences,
31:607–618, June 2005.

[5] Russell, N., A. H. M. t. Hofstede, W. M. P. v. d. Aalst, and
N. Mulyar, Workflow Control-Flow Patterns: A Revised
View, BPM Center Report BPM-06-22, 2006.

[6] Walzer, K., A. Schill, and A. Löser, Temporal constraints for
rule-based event processing. In Proceedings of the ACM
First Ph.D. Workshop in CIKM, ACM, New York, NY, 93-
100, 2007.

