On the Challenges in Event Delivery

Haggai Roitman, Avigdor Gal

Technion - Israel Institute of Technology

Haifa, 32000 Israel

{avigal @ie, haggair @tx } .technion.ac.il

1 Introduction and motivating examples

Complex Event Processing systems are dependent upon
the collection of events from distributed systems. Without a
dependent mechanism for event delivery, the inferencing of
complex events is hampered and the reliability of the sys-
tem quickly deteriorates. Determining the right method for
collecting events may have a significant impact on system
performance and resource utilization and therefore the de-
sign of event delivery mechanism should be done with care.

As an example, consider the growing use of RSS feeds.
A client can customize the rate of monitoring RSS feeds.
The RSS 2.0 specification ([3]) also allows servers to spec-
ify some server capabilities, such as Time-To-Live (TTL)
(specified by the <tt1> XML tag), indicating when an
RSS feed is expected to be refreshed by the server. The RSS
2.0 specification also allows servers to use XML tags such
as <skipHours> that provides instructions for clients to
skip probing the server during specified hours of the day,
e.g., whenever a server is expected to be in maintenance,
and therefore, a client probe would yield an old version of
the RSS file from the server’s cache. The RSS 2.0 specifi-
cation further supports a mechanism named RSS Clouds
(specified by the XML tag <cloud>). Using the cloud
mechanism a client can register a callback service method
that the server can use in order to notify the client when the
RSS feed gets updated. Upon notification, the client is still
required to pull the RSS feed data from the server and filter
data from the RSS feed. With the lack of a service level
agreement (SLA) between the client and the server, there
is no way the server can guarantee an upper bound on the
delay of its notifications to the client.

With the Google Alerts! service a client can register to
Web resources, e.g., RSS feeds and HTML files. The client
can request to be notified as soon as an event occurs, yet
there are no guarantees regarding the delay in notification.
A more common way nowadays for accessing RSS feeds
is using a feed aggregation client application that pulls the

Uhttp://www.google.com/alerts.

Louiga Raschid
University of Maryland
College Park, MD 20742
louiga@umiacs.umd.edu

feeds from servers, e.g., Google Reader.2 Such a client al-
lows the definition of more complex profiles, e.g., defining
the monitoring rate of each feed by the feed aggregator or
specify a filiter for the RSS feed contents. Such clients are
required to collect the RSS feed snapshots directly from the
servers, using a pull mechanism.

As another example, we consider AJAX [1], an asyn-
chronous hybrid push-pull communication protocol imple-
mented with XML and JavaScript. In the BAYEUX proto-
col [4] implementation of AJAX, for example, once a client
opens a connection to the server (pull) the connection is kept
open for a specified, agreed upon, time window. During
this window, the server pushes updates to the client and the
client is required to reconnect to the server (pull) to keep the
connection (and the possibility for server push) alive. This
protocol supports only simple specifications. Also, a server
supporting AJAX cannot specify its event delivery capabil-
ities. For example, it cannot specify an upper bound on the
delay in notifying the client.

With such a diversity of approaches to event delivery, we
next propose a set of basic features of event delivery and
offer a classification of delivery mechanisms (Section 2).
Then, we briefly outline in Section 3 a set of challenges
related with event collection.

2 C(lassification of Server Capabilities and
Event Delivery Patterns

As illustrated above, there is a need for a framework
where client needs and server event delivery capabilities are
specified. Client and server specifications should be inde-
pendent and transparent to the current event delivery solu-
tion. Within this framework, a proxy for the client matches
client needs with relevant server capabilities. The proxy
must determine if the server capability “covers” the client
needs. Further, the proxy must generate an event delivery
schedule which meets the client’s needs and exploits the
available server capabilities. The proxy may augment server

Zhttp://www.google.com/reader.

Server
capability

Some No push
push capabilities capabilities

Client defined Server defined
push services push services

Server Capabilities

I Push-only. ” Push-filter " Hybrid push-pull Pull-only

Conditional pull ||

Push Delivery Patterns

Figure 1. Classification of server capabilities
and event delivery patterns

push with pull actions to meet client needs.

We now present a hierarchical classification of server ca-
pabilities and the event delivery patterns. Figure 1 graphi-
cally illustrates these relationships.

No push services: A server allows client pull, possibly
under politeness constraints [2], yet does not provide push
services. This scenario is common in the public Web. A
proxy needs to poll a server in this scenario, resulting in
Pull-only event delivery pattern (see right-most part of Fig-
ure 1).

Server-defined push services: A server offers a (lim-
ited) set of push services for client subscription. These ser-
vices may not match a client’s actual needs. On the one
extreme, there is no discrepancy and the server capabilities
can perfectly satisfy the client needs, resulting in a Push-
only event delivery pattern (see the path that terminates in
the left-most delivery pattern). On the other extreme, the
server capabilities cannot satisfy any of the client needs, and
therefore, resulting in a Pull-only event delivery pattern.

In between, there are three possible types of discrepan-
cies. The first type is when the server is capable to fully
satisfy the client needs, but delivers also some redundant
updates that may overwhelm the client. Therefore, some of
the push events need to be filtered out by the proxy (Push-
filter event delivery pattern, second from left in Figure 1).
For example, eBay pushes information to a client who made
a bid, whenever the client was outbid. A client that is inter-
ested in notifications only when she was outbid by a certain
threshold is required to filter out some of these notification.

The second discrepancy type involves partial satisfac-
tion of client needs. For example, a server may push the
client periodic notifications, while the client requires to get

Pul

notifications after each update. In this case, some combi-
nation of push-pull is required to satisfy the client profile,
augmenting server push by monitoring tasks (Hybrid-push-
pull event delivery pattern. middle of Figure 1).

Finally, a discrepancy is possible whenever the timing of

server notifications yields no real value to clients. For ex-
ample, a server may push to a client an update within 10
minutes, while the client needs it in 5 minutes. In this case,
the server push is augmented with a conditional pull action
in case the notification fails to arrive on time (Conditional-
pull event delivery pattern, second from right). Such condi-
tional pull may be also required in cases where a client has
to actively pull the server to retrieve the actual content upon
receiving a notification of such update occurrence from the
server (e.g., using the RSS cloud mechanism).

Client-defined push services: A server in this category

receives client specifications and delivers events accord-
ingly, resulting in a Push-only event delivery pattern.

3

Challenges

The main event delivery challenge is the ability to utilize

resources efficiently and be flexible in determining when to
use push capabilities of a server and when to pull. In some
cases, parphrasing on Shakespeare’s Hamlet, "'to pull or not
to pull, this is the question.” In other cases, given the costs
of server push capabilities, there is a need to balance the
utility of push services with those of pull abilities.

Given server capabilities and client needs, some of the

specific challenges to be addressed involve the determina-
tion of whether a schedule of push actions can satisfy client
needs; Efficient (e.g., by minimizing the number of pull ac-
tions and maximizing the usage of server push) augmen-
tation of push scheduled actions with pull actions so as to
satisfy client event needs. Another challenge involves the
generationg of a schedule that minimizes the delay in event
delivery while minimizing the number of missed events.

References

(1]

(2]

(3]
(4]

E. Bozdag, A. Mesbah, and A. van Deursen. A comparison
of push and pull techniques for AJAX. Report TUD-SERG-
2007-016a, 2007.

J. Eckstein, A. Gal, and S. Reiner. Monitoring an information
source under a politeness constraint. INFORMS Journal on
Computing, 2007. forthcoming.

RSS. http://www.rss-specifications.com.

A. Russell, G. Wilkins, and D. Davis. Bayeux - a JSON
protocol for publish/subscribe event delivery protocol.
0.1draft3, hitp://svn.xantus.org/shortbus/trunk/bayeux/bayeux.html,
2007.

