
Publish/Subscribe-based Cluster and Routing Algorithm
for Actuator and Sensor Networks

Jan Hendrik Schönherr
∗

schnhrr@cs.tu-berlin.de
Helge Parzyjegla

parzyjegla@acm.org
Gero Mühl

g_muehl@acm.org
Communication and Operating Systems Group

Berlin Institute of Technology
Einsteinufer 17 EN6, 10587 Berlin, Germany

ABSTRACT
In this paper we present a self-organizing and self-stabilizing
cluster and routing algorithm for actuator and sensor net-
works that is solely based on publish/subscribe primitives.
The algorithm design captivates with its simplicity and is
yet robust against node and link failures. The provided pub-
lish/subscribe middleware which incorporates the algorithm
allows an elegant application design for actuator and sensor
networks.
Keywords: Publish/Subscribe, Actuator and Sensor Net-
works, Cluster, Self-Stabilization, Self-Organization

1. INTRODUCTION
Since the miniaturization of electronic devices advances ra-
pidly, in the near future, a person will habitually carry a
whole lot of intelligent gadgets that unobtrusively provide
assistance in daily work and life. Moreover, the environ-
ment itself will be equipped with a multitude of electronic
sensors and actuators to interact with. In order to support
meaningful applications all these devices have to commu-
nicate (wirelessly) by forming complex actuator and sensor
networks (AS-Nets). AS-Nets need to be self-organizing as
normal users cannot be expected to be able or even willing
to administer a dynamic network consisting of possibly hun-
dreds of devices [6]. Thus, the network should ideally handle
all configurations, adaptations, and failures itself. Consider-
ing the complexity of the network, its dynamic nature, and
existing fault tolerance requirements, it is also not sensible
to rely on a single controlling instance having global knowl-
edge to carry out all administrative tasks. Instead, devices
have to cooperatively contribute to network management.

An appealing way to organize cooperation is to employ an
event-driven style of interaction by exploiting publish/sub-
scribe: producers publish notifications, while consumers se-
lectively subscribe to notifications, for example, using topic-

∗Funded by Deutsche Forschungsgemeinschaft.

based or content-based filters [5]. Publish/subscribe ideally
fits the targeted setting because, usually, neither produc-
ers nor consumers do address their counterparts explicitly.
This leads to a loosely and dynamic coupling of components
allowing for more flexibility and fault resistance than if an
explicit addressing of individual nodes was used.

In this paper we present a self-organizing cluster and routing
algorithm for AS-Nets that builds upon publish/subscribe
primitives. Publish/subscribe is used for cluster formation
as well as for intra-cluster and inter-cluster communication
providing a lightweight middleware layer for event-driven ap-
plications. Addressing clustering and event routing with the
same means in an integrated approach reduces the complex-
ity considerably compared to combining other approaches
that focus either on clustering [7] or on routing [4].

2. CLUSTERING PUB/SUB ALGORITHM
Our algorithm has very moderate prerequisites. We only re-
quire a simple radio network with basic broadcast capabili-
ties. In the following we first describe the cluster formation
and, then, the cluster maintenance.

2.1 Cluster Formation
At first, basic k-hop clusters are formed using a heartbeat
that each node broadcasts periodically. Therefore, a heart-
beat contains information about the node’s cluster and its
distance to the cluster-head measured in hops. A new node
listens to heartbeat signals and joins any suitable cluster by
simply announcing its membership in its own heartbeat. If
no suitable heartbeat is received within a certain amount
of time the node starts to announce itself as the head of a
new cluster. In each cluster, the nodes set up a publish/
subscribe broker network based on the shortest path tree to
the cluster-head which is established as a byproduct of the
heartbeat signal. This is shown as level 0 in Fig. 1.

After setting up intra-cluster communication, the broker
network is utilized to realize inter-cluster communication:
The cluster-head subscribes for inward notifications, while
gateway nodes (nodes that can hear heartbeats from dif-
ferent clusters) place appropriate subscriptions for outward
notifications in their own cluster. Gateway nodes also have
the ability to publish notifications in neighboring clusters.
This enables a message flow between cluster-heads of adja-
cent clusters: A cluster-head publishes a message wrapped
in an outward notification, the gateway node re-wraps this



Figure 1: Schematic view of the created broker
topology. Level 0 shows existing physical nodes and
links. Level 1 (and up) is logical only.

message into an inward notification and publishes it in the
destination cluster, where it will be consumed by the cluster-
head. In order to ensure that only one of the suitable gate-
way nodes forwards a message, the primitive publishSingle
is used that ensures that a messages is only delivered to a
single consumer.

This enables us to realize communication primitives on a
cluster to cluster basis (namely a broadcast and a directed
send). This in turn allows us to apply our algorithm recur-
sively, as this upper level can be handled in exactly the same
way as the level below: sending heartbeats, forming clusters,
setting up inter-cluster communication and so on. A possi-
ble result of this upper level is shown in level 1 in Fig. 1.
This process is repeated until the whole network is covered
by a single cluster on the highest level. Global publish/
subscribe functionality for applications is easily achieved by
allowing normal (i. e., not cluster related) subscriptions to
cross level boundaries (depicted as dotted lines in Fig. 1).

2.2 Cluster Maintenance
All information that is kept in the network is periodically
refreshed, making it robust against sporadic message loss,
duplication, mutation, and also transient memory corrup-
tion. Therefore, our approach is self-stabilizing; an impor-
tant property in unsupervised networks [1].

Node failures or changes in the network topology are de-
tected by the absence of heartbeats. They are handled on
the lowest level possible: as long as a failure or change can
be handled locally in a cluster, it is not propagated to the
next level. Link failures are automatically reflected by van-
ishing subscriptions in the publish/subscribe substrate. As
these subscriptions are inherent redundant, there is no need
to reconstruct routes between clusters. If no route is left
to a cluster, this is handled as a link failure on the next
higher level. If either the cluster gets partitioned or it loses
too much internal state (currently this would be a cluster-
head failure), the remaining nodes reassign themselves to
different clusters if possible, otherwise new clusters are gen-
erated. Because of this we do not have a ripple effect that
might cause a reorganization of the complete network that
occurs for many self-stabilizing algorithms.

The infrastructure repairing algorithms are intentionally very
simple. We do not utilize a special handling for each and
every situation. Naturally this comes along with increased
self-stabilization times. To overcome this, we plan to intro-
duce adaptive heartbeats: if a failure or a change is detected,
the normal heartbeat period is shortened near the origin, so
that the normal (and simple) algorithms perform their work
faster. We consider this and the avoided ripple effect to be
forms of fault containment [3] and superstabilization [2].

3. CONCLUSIONS AND FUTURE WORK
We presented a new approach to routing and clustering in
wireless AS-Nets, which impresses with its simplicity. Ap-
plication developers are provided with a publish/subscribe
middleware, which is deeply integrated into the communi-
cation mechanism, and, thus, avoids overhead that would
normally occur when realizing a publish/subscribe layer on
top of a usual routing protocol. Using publish/subscribe
as a routing mechanism in wireless networks reveals several
synergies, such as automatic route recovery that must be
explicitly developed in traditional approaches.

While our approach introduces a certain overhead because of
the hierarchical clustering, we believe that this is outweighed
by the gained amount of fault-tolerance. In the future we
will address this overhead by reducing the special tasks of
cluster-heads and explore the versatility of our approach by
exchanging the used clustering and publish/subscribe sub-
strates. Furthermore, we will perform an in depth evaluation
of the approach to confirm its usefulness in the use cases we
target at.

4. REFERENCES
[1] S. Dolev. Self-Stabilization. MIT Press, Cambridge,

MA, USA, 2000.

[2] S. Dolev and T. Herman. Superstabilizing protocols for
dynamic distributed systems. Chicago Journal of
Theoretical Computer Science, 1997(4):1–40, Dec. 1997.
Special Issue on Self-Stabilization.

[3] S. Ghosh, A. Gupta, T. Herman, and S. V. Pemmaraju.
Fault-containing self-stabilizing algorithms. In
Proceedings of the 15th Annual ACM Symposium on
Principles of Distributed Computing (PODC ’96), pages
45–54, New York, NY, USA, May 1996. ACM Press.

[4] X. Hong, K. Xu, and M. Gerla. Scalable routing
protocols for mobile ad hoc networks. IEEE Network,
16(4):11–21, July/Aug. 2002.

[5] G. Mühl, L. Fiege, and P. R. Pietzuch. Distributed
Event-Based Systems. Springer, Aug. 2006.

[6] H. Parzyjegla, M. A. Jaeger, G. Mühl, and T. Weis. A
model-driven approach to the development of
autonomous control applications. In Proceedings of the
1st Workshop on Model-driven Software Adaptation
(M-ADAPT ’07) at ECOOP 2007, pages 25–27, Berlin,
Germany, July 2007.

[7] J. Y. Yu and P. H. Chong. A survey of clustering
schemes for mobile ad hoc networks. IEEE
Communications Surveys & Tutorials, 7(1):32–48, 2005.


	Introduction
	Clustering Pub/Sub Algorithm
	Cluster Formation
	Cluster Maintenance

	Conclusions and Future Work
	References

